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a b s t r a c t 

The emergence of technology associated with the Internet of Things (IoT) is reshaping our lives, while 

simultaneously raising many issues due to their low level of security, which attackers can exploit for ma- 

licious purposes. This research paper conducts a comprehensive analysis of previous studies on IoT device 

security with a focus on the various tools used to test IoT devices and the vulnerabilities that were found. 

Additionally, the paper contains a survey of IoT-based security testbeds in the research literature. In this 

research study, we introduce an open source platform for identifying weaknesses in IoT networks and 

communications. The platform is easily modifiable and extendible to enable the addition of new secu- 

rity assessment tests and functionalities. It automates security evaluation, allowing for testing without 

human intervention. The testbed reports the security problems of the tested devices and can detect all 

attacks made against the devices. It is also designed to monitor communications within the testbed and 

with connected devices, enabling the system to abort if malicious activity is detected. To demonstrate 

the capabilities of the proposed IoT security testbed, it is used to examine the vulnerabilities of two IoT 

devices: a wireless camera and a smart bulb. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The Internet of Things (IoT) is a recent evolution in com-

unication technology that is rapidly reshaping our future. This

echnology enables communication and interaction between small

mbedded devices, improving the ability of such devices to bet-

er serve our needs ( Memos et al., 2018 ). In the future, IoT will

e a key technological solution for many sectors including health

are, agriculture and manufacturing ( Adjih et al., 2015 , Tewari and

upta, 2018 ). For example, in the field of health care, IoT can moni-

or and control human health indicators and rapidly deliver reports

nd alarms to medical personnel. The application of these devices

s saving many lives. According to ( Tewari and Gupta, 2017 ), the

otal worth of all existing IoT devices is valued at around $6.2 tril-

ion, most of which is deployed in healthcare applications. 

Moreover, IoT technology is considered to be one of the main

omponents in the up-and-coming trend of smart cities. Many

tudies have discussed the various uses of IoT in shaping health-

er building structures, managing waste, monitoring noise, control-

ing smart lighting and even relieving traffic ( Zanella et al., 2014 ).
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he concept of smart cities is emerging as a result of the perceived

enefits to citizens, government and the environment. 

However, due to the limited capabilities of IoT devices, many of

hem have vulnerabilities that make them prone to various attacks.

 vulnerable IoT device can be a dangerous hole in any network,

egardless of its security level ( Badve et al., 2017 ). Many attacks

ave involved leveraging the vulnerabilities of IoT devices, includ-

ng actions such as replay attacks, zero-day attacks, impersonation

ttacks and spoofing attacks. An increase in botnet attacks has also

een observed. The Mirai botnet is a well-known example; it at-

acks devices by exploiting default credentials ( Kolias et al., 2017 ,

upta, 2018 ). According to Proofpoint, more than 25% of the bot-

et’s targets were smart TVs, baby monitors and other smart home

evices ( Stergiou et al., 2018 ). Hundreds of IoT devices have been

orrupted and forced to launch Denial of Service (DoS) attacks on

ritical servers. These attacks use Domain Name Service (DNS) and

etwork Time Protocol (NTP) as a form of distributed DoS (DDoS)

ttack. One study reported that the main reason the Mirai botnet

s so effective is the use of low-cost, easy-to-install IoT devices, de-

eloped with little or no concern for security ( Jerkins, 2017 ). 

Testing the security of IoT devices before introducing them to

he market is an important step in product development, and this

s a field in which testbeds can be extremely useful. A security

estbed is a predefined testing environment in which all triggers,

ests, attacks and devices are controlled ( Cao et al., 2015 ). Testbeds

re isolated to prevent interference from surrounding noise. They
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perform comprehensive vulnerability assessments on devices using

penetration testing tools within certain environmental conditions.

Generally, testbeds consist of an array of software and hardware

tools working with simulators to change environmental settings

such as light, time, GPS location, etc. They assess the device’s vul-

nerabilities under real-world conditions and analyze its behavior to

detect any malicious applications. Testbeds can specify various pa-

rameters to assess different security aspects. They examine the IoT

device’s response to each test in order to draw conclusions about

the device’s weaknesses and vulnerabilities. 

According to Murad et al. (2018) , testing IoT devices can be

challenging due to the characteristics and limitations of these de-

vices. The next section of this paper is a comprehensive litera-

ture review presenting studies that attempt to analyze IoT device

vulnerabilities and discussing the tests developed for each prod-

uct. Some researchers have introduced structures for IoT security

testbeds, but few of these designs were implemented. To the best

of our knowledge, one of the most comprehensive IoT security

testbeds was implemented and developed by Siboni et al. (2018) .

They introduced a testbed structure and implementation plan for

testing IoT devices, using a closed-source tool as a testbed orches-

tra. However, their testbed lacks scalability, making it difficult to

add more tests. The aim of this paper is to design an automated IoT

security testbed that is comprehensive, easy to use and repeatable,

using only open-source tools. The testbed has a modular structure

so that tests can be added without affecting the testbed’s structure

and behavior. This testbed will assess the security of IoT products

that are fully functional and ready to be used. The main goal of

this testbed is to identify the minimum security level of IoT prod-

ucts. 

The practical implications of our product are that it can be used

by IoT pen-testers and product manufacturers to assess the secu-

rity of IoT devices before they are distributed. It can also be used

by market regulators to set a minimum level of security for IoT

devices sold on the market. The modular nature of our software

also allows researchers to extend the system and add their own

test cases to the IoT testbed, making it a powerful tool for research

and experimentation. We are providing the IoT security testbed as

a service for individuals from academia and industry, and for smart

home IoT end users. The implementation results in Section 5 show

the testbed’s effectiveness at detecting the vulnerabilities of IoT de-

vices. 

The main contributions of this paper are to: 

• Conduct a comprehensive analysis of previous studies on IoT

device security stating what tools were used on which de-

vices and what vulnerabilities were found. 

• Introduce a survey of IoT-based security testbeds introduced

in the research literature. 

• Define a structure for building an IoT security testbed to

assess the vulnerabilities of IoT devices using open source

tools. 

• Introduce an automated testbed that reduces user interac-

tion. This will guarantee that all connected devices are au-

thenticated in order to meet security requirements. It will

report attacks against devices as well as against the testbed

itself. In addition, it is designed to monitor communication

within the testbed and with outboard connections. It aborts

upon detecting malicious activity. 

• Demonstrate the functionality of the fully implemented au-

tomated testbed by testing two IoT devices: a wireless cam-

era and a smart bulb. 

Our automated testbed is used on two IoT devices: a wireless

camera and a smart bulb. The wireless camera is an example of an

IoT device that hosts a web server to provide its services. The de-

vice is configured via a web page hosted in the web server. In con-
rast, the smart bulb is an example of an IoT device that publishes

ts updated status in the network (advertisements). Such devices

an usually be configured by using a mobile application that con-

ects directly to the IoT device through a Wireless Local Network

WLAN) or by connecting to the vendor server. Due to the different

tructures of the two IoT devices, the tests conducted by the pro-

osed testbed are different as well. It is the role of the automated

estbed to identify the device type and the services hosted in every

ort in order to launch the appropriate test attack. In our experi-

ent, we reported that the wireless camera is vulnerable due to

he fact that it sends user credentials in plain text with no encryp-

ion, and due to the fact that it does not use certificates. As for

he smart bulb, it is vulnerable to replay attacks, as it accepted re-

eated packets from nodes in the network other than the authen-

icated user. 

The structure of this research paper is as follows: Section 2 is

 comprehensive review of the literature on IoT security and mit-

gation attempts including testbeds. Section 3 presents the re-

uirements and structure of our proposed IoT security testbed.

he setup for the proposed testbed is shown in Section 4 .

ection 5 demonstrates a full implementation of our testbed and

hows its capabilities by testing two IoT devices and analyzing the

esults. Finally, some recommendations and future plans are sug-

ested in Section 6 . 

. Comprehensive study on IoT security analysis 

Markets nowadays promote various types of IoT devices and

roducts—smart cameras, smart plugs, etc.—some of which have

evere security issues. Many security researchers have conducted

ulnerability assessments for IoT products, which we discuss in

his section. 

.1. IoT vulnerabilities 

Several researchers have investigated security breaches in IoT

evices in order to assess their security mechanisms and identify

ll potential vulnerabilities ( Ly and Jin, 2016 , Wurm et al., 2016 ,

abrizi and Pattabiraman, 2016 , Kim et al., 2010 , Ur et al., 2013 ,

o et al., 2016 , Chistiakov, 2017 , Hernandez et al., 2014 , Oren and

eromytis, 2014 , Denning and Kohno, 2013 ). Section 2.1 concen-

rates on the weaknesses found in IoT products in the academic

iterature. 

A case study on the security of the August Smart Lock was done

y Ye et al. (2017) . The study analyzed the device’s vulnerabili-

ies, which include exposure of the device’s handshake key and the

wner’s account data and personal information, as well as suscep-

ibility to Denial of Service (DoS) attacks. Methods to defend the

evices against these attacks were conducted in the study in an

ffort to improve the device’s security. In another study, Ly and

in (2016) analyzed the problem of user information leakage. They

xamined the firmware of tech wristbands including the Nike + Fu-

lband, the Huawei band, the Xiaomi Mi band and the Codoon

and and found insufficient security causing leakage of user infor-

ation. 

Another IoT device that has been the focus of security testing

s the smart meter. Two research teams, Wurm et al. (2016) and

abrizi and Pattabiraman (2016) , both published studies in which

hey simulated smart meter functionalities and launched con-

rolled attacks to discover the device’s weak points. Tabrizi and

attabiraman (2016) proposed solutions to improve the device’s

ecurity, while Tabrizi and Pattabiraman (2016) added an analysis

ool to enable users to detect malicious activity. 

Smart lock security has also grabbed the attention of re-

earchers ( Kim et al., 2010 , Ur et al., 2013 , Ho et al., 2016 ,

histiakov, 2017 ), many of whom have analyzed the various risks
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ssociated with these IoT devices. Some of the smart locks under

crutiny exposed sensitive user information, while others could be

ontrolled by unauthorized devices. To solve the access control is-

ue, Kim et al. (2010) suggested that modern smart locks should

ave the following control levels: full, restricted, partial and min-

mal. Chistiakov (2017) developed a new security design for smart

ocks using an Electrically Erasable Programmable Read-Only Mem-

ry (EEPROM) chip. The improved design included user authentica-

ion over the Hypertext Transfer Protocol Secure (HTTPS) channel. 

The Smart Nest Learning Thermostat is another smart home

evice that has been analyzed by researchers. In their study,

ernandez et al. (2014) tested the device by booting a mali-

ious image through a USB port. In another paper, Oren and

eromytis (2014) discovered attacks on smart TVs that targeted the

evices’ communication protocols. 

With the emergence of IoT technology, another concept enter-

ng the market is smart home technology, which enables wire-

ess control of doors, lights and other appliances. According to

enning and Kohno (2013) , these types of home devices are vul-

erable to attacks due to the lack of a professional administrator.

tudies by Denning et al. (2013) and Ur et al. (2014) have analyzed

ccess control policies and threats associated with these types of

evices. They also discussed possible attacks on smart home de-

ices such as data destruction, illegal physical entry and attacks of

rivacy violation. They showed how such attacks could reduce the

ecurity level of home devices. 

As the number of IoT devices deployed in homes increases, con-

rolling these devices becomes progressively more complicated be-

ause each device uses a separate mobile application. This issue

an be resolved with a smart home system, such as Samsung’s

martThings or Apple’s HomeKit, which controls all devices effi-

iently using a single app. 

The analysis of Samsung SmartThings by

ernandes et al. (2016) identified four possible attacks that

ould be launched against IoT device control applications. These

ncluded creating backdoors in mobile apps, snooping door-lock

in codes, disabling protection setups and generating fake alarms.

n addition, Gyory and Chuah (2017) found security bugs in Smart-

hings that gave a third party privileged access to the system.

he researchers solved this issue by proposing IoT ONE, an open-

ource automation platform developed by openHab that supports

 number of IoT devices along with Z-wave, Zigbee and Wi-Fi pro-

ocols. However, openHab is not compatible with all SmartThings

evices. Ammar et al. (2018) also conducted a comprehensive

nalysis on Samsung SmartThings and Apple HomeKit, as well as

oT frameworks such as AWS IoT Amazon and Azure IoT Microsoft. 

Studies by Fernandez et al. (2007) and

lghamdi et al. (2013) examined the security drawbacks of

etwork protocols, which have been the target of attacks in re-

ent years. Fernandez et al. (2007) studied DoS attack patterns

n VoIP networks and improved the security structure of the

rotocol, but their improvement requires effort to be applied.

lghamdi et al. (2013) examined the security drawbacks of the

onstrained Application Protocol (CoAP), which is an application

ayer for constrained IoT devices. 

Other researchers have launched attacks on IoT devices in or-

er to investigate potential security weaknesses ( Wurm et al., 2016 ,

yr et al., 2014 , Moody and Hunter, 2016 , Ronen and Shamir, 2016 ).

yr et al. (2014) conducted network analyses and firmware anal-

ses on smart watches, while also checking for mobile app vul-

erabilities. The authors traced the user’s private address from the

oT device, captured the key exchange, reverse-engineered the mo-

ile app, monitored traffic between the app and the Fitbit server

nd used proxy Transport Layer Security (TLS) traffic to intercept

nd extract data. The authors used various tools including Uber-

ooth, Wireshark, crackle, APK Extractor and dex2jar. Moreover,
hey used the Joint Testing Action Group (JTAG) for hardware anal-

sis. Willingham and Henderson (2018) focused on assessing the

ecurity of BLE devices. They tested the security of smart watches

anually using Wireshark, Kismet and Crackle. 

Table 1 shows a summary of the research conducted to assess

he vulnerabilities of IoT products though attacks. The table lists

he topic of each paper and the IoT products that were analyzed.

he table also lists the tools used and the attacks conducted in the

esearch papers, as well as the results and findings of each attack. 

.2. Vulnerability mitigation techniques and security testbeds 

To mitigate security holes, researchers have developed defense

ethodologies. Some researchers, such as Prokofiev et al. (2018) ,

roposed tools that can detect attacks in advance. They intro-

uced a logistic regression method that analyzes IoT devices and

heir network characteristics to assess the probability of botnet

ttacks on IoT devices. Gegick and Williams (2005) compiled at-

ack patterns that highlight security issues in software design and

ound that matching these patterns to security threats in the de-

ign phase helps to prevent threats early. Miettinen et al. (2017) in-

roduced a framework to secure vulnerable devices by identify-

ng devices connected to a network using network traffic finger-

rinting and machine learning techniques. This is useful in in-

reasing or decreasing the security restriction level on connected

evices. 

As discussed earlier, smart home security is essential.

emetriou et al. (2017) increased security in the home envi-

onment by creating a software-defined network (SDN) that

ategorizes IoT devices as nodes and smartphones as monitors to

heck node behavior. Gelenbe et al. (2018) proposed SerIoT, an IoT

latform based on SDN and secure routers. 

Another important focus of recent research was testbed as-

essments. Generally, IoT testbeds analyze various aspects of IoT,

ut they do not specifically address device security. According

o Chernyshev et al. (2018) and Adjih et al. (2015) , sometimes

estbeds are used experimentally as a substitute for IoT simulators.

or example, FIT IoT-LAB is a testbed for low-power wireless de-

ices used in conjunction with mobile robots for large-scale envi-

onment experiments. The resulting heterogeneous testing system

overs many IoT case studies and applications. 

Nevertheless, to gain a more general understanding of IoT de-

ice exploits and vulnerabilities, many researchers used security

estbeds. Berhanu et al. (2013) illustrated a testbed for securing IoT

evices in eHealth applications. For example, many low-power de-

ices communicate by receiving and forwarding patient indicators

sing low-rate communication media. The researchers developed a

cenario for the assessment and validation of context-aware adap-

ive security solutions for eHealth. 

Moreover, Sachidananda et al. (2017) introduced a security

estbed to analyze the security issues of IoT devices. This testbed

pecified architecture and design requirements to support the de-

elopment of penetration testing for security analysis. The pen-

tration testing included port scanning, fingerprinting, process

numeration and vulnerability scanning. They conducted testing

ased on the security holes in the IoT device market (i.e. Ama-

on Echo, Nest Cam, Philips Hue, SENSE Mother, Samsung Smart-

hings, Withings HOME, WeMo Smart Crock-Pot and Netatmo Se-

urity Camera). The testbed included various IoT devices such as

mart home devices, smart wearables and Wireless Sensor Net-

orks (WSNs), which were tested according to security require-

ents. In terms of testbed control and management, their testbed

ses NI TestStand software to manage testbed events and pro-

esses. NI TestStand is a closed source software that runs exclu-

ively on Windows OS which is heavily restrictive and proprietary.

his prevents tests from managing wireless cards, passive capture
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Table 1 

Conducted IoT attacks and results. 

Ref. Year Summary Products tested Tools Attacks Results 

Cyr et al. (2014) 2014 • Analyzed smart 

watches by network 

analysis, firmware 

analysis. 

• Assessment of 

mobile app 

vulnerabilities. 

• Fitbit smart watch. • JTAG 

• Ubertooth 

• Wireshark 

• Crackle 

• APK Extractor 

• Backsmali 

• dex2jar 

• Trace private 

addresses. 

• Capture key 

exchange. 

• Reverse engineer 

mobile app. 

• Monitor traffic 

between app and Fitbit 

server and intercept 

TLS traffic with proxy. 

• MAC address is traceable. 

• Key exchange is not 

exposed. 

• TLS was replaced 

through a proxy to extract 

clear text credentials. 

Arias et al. (2015) 2015 • Created a Trojan 

Horse that exposed 

devices to an 

external IP address 

to be attacked by a 

server. 

• Accessed devices 

physically to change 

firmware. 

• Nest Thermostat 

• Nike + Fuelband 

- • Hardware access on 

Nike + FuelBand. 

• Physical tamper for 

Nest to get backdoor. 

• Firmware and checksum 

modifiable. 

Bachy et al. (2015) 2015 • Multiple attacks on 

smart TV by 

intercepting channel 

or attacking apps 

running on the TV. 

• Smart TV – 4 types. • Binwalk • Compromise devices 

in public network 

ADSL to extract 

firmware. 

• Apply XSS attacks on 

web browser. 

• Firmware is updated in 

an unsecured channel, 

making it prone to 

firmware modification 

attack. 

Moody and 

Hunter (2016) 

2016 • Used Kiddie Scripts 

(tool for non-IT 

practitioners) to 

exploit devices. 

• Nest thermostat. • Kiddie scripts 

• Wireshark 

• Ettercap 

• Forensic 

• Toolkit (FTK) 

• Autopsy 

• Physical access to 

gain credentials. 

• Packet analysis. 

• Failure to gain root 

access. 

• Communication was 

encrypted with AES128 

encryption. 

Wurm et al. (2016) 2016 • Analyzed security 

of Haier home 

systems through 

different attacks. 

• Haier Smart Care 

home automation 

system. 

• Wireshark, UART. • Obtain password 

with brute force 

attack. 

• Gain root shell by 

accessing UART. 

• Analyze network 

analysis and reverse 

engineer firmware on 

air. 

• Telnet credentials were 

exposed by root shell 

access. 

• Firmware updates were 

sent in clear text. 

• Reversed firmware 

exposed details about 

device’s MQTT 

information. 

Ronen and Shamir 

(2016) 

2016 • Analyzed smart 

bulb security issues 

and attempted to 

gain control from 

100 meters away. 

• Limitless LED 

• Philips Lux 

• Introduced their 

own receiver. 

• Eavesdrop control 

packets. 

• Extract secret 

information using API. 

• Private data were 

exposed during MITM 

attack. 

Sivaraman et al. (2016) 2016 • Injected malware 

in an iOS mobile app 

to discover BLE and 

wireless IoT devices 

with a server. 

• Devices exposed to 

external IP using 

UPnP were attacked 

by server. 

• Dlink 

• DCS-5500G camera. 

• WeMO plug 

• Netgear Nighthawk 

R7000 AP [Emulated] 

• iOS App 

• a cloud- hosted 

server to receive 

scan results from 

the app. 

• Search nearby LANs 

to find devices. 

• Expose those devices 

to a public IP address. 

• Use SSDP to collect 

device responses in LAN 

and analyze them to check 

for IoT devices. 

• Exposed devices enabled 

server to attack devices. 

Morgner et al. (2016) 2016 • Leverage insecurity 

of Zigbee light link 

(ZLL) to attack smart 

bulbs. 

• Philips Hue 

• Osram Lightify 

• GE Link 

• Ubertooth 

spectrum analyzer 

• DoS attack. 

• Reset device attack. 

• Network hijacking. 

• Command injection 

attacks. 

• ZLL devices vulnerable to 

command injection, DoS 

and device reset attacks. 

• New passwords injected 

by attackers as master 

keys. 

Ling et al. (2017) 2017 • Reversed 

communication of 

smart socket. 

• Socket Edimax plug. • Special attacking 

scripts written in 

python 

• Device scanning. 

• Brute force. 

• Spoofing. 

• Firmware 

modification attack 

• Insecure communication 

protocols. 

• Lack of device 

authentication. 

• Weak password policy. 

Ling et al. (2017) 2017 • Analyzed 

communication 

protocols and 

architecture of 

Edimax IP camera 

and extracted 

vulnerabilities. 

• Edimax IP camera 

system. 

- • Scan online devices 

by enumerating all 

possible MAC 

combinations. 

• Brute force device 

credentials. 

• Emulate victim 

camera to fool 

authentication server. 

• The camera exposed its 

connection status 

(online/offline). 

• Vulnerable to brute force. 

• Spoof attack can 

impersonate real cameras 

to get authentication 

information. 

( continued on next page ) 
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Table 1 ( continued ) 

Ref. Year Summary Products tested Tools Attacks Results 

Seralathan et al. (2018) 2018 • Analyzed IP camera 

traffic. 

• IP Cameras • Nmap 

• Wireshark 

• Perform network 

analysis and MITM. 

• Brute force port RTSP 

to get video streams. 

• Reverse engineer 

mobile app. 

• RTSP port found to 

expose real-time streams 

that can send commands. 

• Commands/ credentials 

sent in clear text. 

• Failed to get video 

streams. 

• Credentials in mobile 

app are in clear text. 

Huraj et al. (2018) 2018 • Created a reflected 

UDP-based DoS 

attack using IoT 

devices. 

• IP camera 

• Philips Hue Bridge 

• AirLive Wireless 

Printer 

• Raspberry Pi 

• Hping3 tool. • Flood UDP DoS attack 

using victim’s IP. 

• Victim device services 

were not affected. 

Siboni et al. (2018) 2018 • Compromised 

smart watch to 

impersonate a WiFi 

printer. 

• WiFi Printer. • Wireshark 

• Printer Command 

Language (PCL) 

• Airoplay 

• De-authenticate 

legitimate printer and 

host fake AP. 

• Successfully received 

printing orders from 

devices in network. 

Xu et al. (2018) 2018 • Used Insecam 

website to retrieve 

open cameras with 

live streams. 

• Different IP cameras 

taken from Insecam 

website. 

• Angry IP (for 

scanning domains). 

• Checked open-access 

devices. 

• Many IP cameras did not 

have passwords set. 

Classen et al. (2018) 2018 • Analyzed many 

security 

vulnerabilities and 

attacks on Fitbit 

smartwatch. 

• Fitbit smartwatch • APKtool 

• Gatttool 

• Many others 

• Leak information. 

• Analyze firmware 

and modify protocols. 

• Modify Fitbit mobile 

app to access cloud. 

• Information leakage. 

• Injecting compromised 

firmware. 

• Modifying app to access 

developer mode and gain 

access to cloud. 

Willingham et al. 

(2018) 

2018 • Find exploits in the 

BLE protocol through 

testing smartwatches 

using Kali Linux and 

Ubertooth 

• FitBit Charge 

• Logitech Keyboard 

• LG watch 

• Wireshark 

• Kismet 

• Crackle 

• Packet sniffing • Ubertooth was not able 

to read personal data. 

• Due to unawareness 

packet, format packets 

were not understandable. 
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f packets and other network or low-level functionalities, which is

onsidered a huge drawback as it limits network penetration test-

ng capabilities. 

Hale et al. (2018) proposes an open source platform called Se-

uWear which identifies the vulnerabilities of commercial hard-

are. The SecuWear testbed captures the information necessary

or identifying different attacks, thereby assessing the security

f wearable devices. Moreover, it provides to the security com-

unity a process for performing attacks and mitigating infor-

ation. The disadvantage of SecuWear is that identified vulner-

bilities on Metawear must still be investigated in commercial

oT devices to determine if they apply. Furthermore, vulnerabil-

ties may be specific to certain open source components, caus-

ng false positives when identifying security issues as common

roblems. 

Table 2 summarizes the findings of our research on IoT secu-

ity testbeds and compares it with our IoT security testbed. This

omparison is based on the testbed’s approach, the hardware setup

equired to build the testbed, the devices tested, the attacks per-

ormed by the testbed and the software tools used. Information is

lso included about whether or not the testbeds are automated,

he availability of a Management System (MS) that controls the

estbed, and whether or not the MS is open source (OS), as well

s the existence of Wi-Fi and BLE options. 

.3. Our testbed contribution 

In this paper, we propose an automated IoT security testbed

hat can evaluate the security of IoT devices. We also define its

ain components and structure. As the testbed leverages open

ource tools, it is easily modifiable and extendible. The model will

e tested on two off-the-shelf IoT devices. Later in this paper, we

nalyze the results and discuss vulnerability reports. Our IoT secu-

ity testbed has the following features: 
1. The implemented IoT security testbed is based on open

source tools controlled by an open source Managment Sys-

tem (MS). 

2. The IoT security testbed consists of an interface module, a

testing module, a network module, a report module and a

storage module. All modules interact to perform as a com-

plete security testing software. They are controlled by the

MS and their updates are displayed to the user via an easy-

to-use GUI. 

3. The modular structure and architecture of the testbed allows

other researchers to use it to build their own testing tools. It

is a flexible and extendible system, meaning that researchers

can adopt the initial structure and add to the modular de-

sign. 

4. The IoT testbed lists all exploits and CVEs found for the de-

vice tested, as well as for the services the device hosts in

each port. For example: OpenSSH 7.6 service on port 22 Se-

cure Shell (SSH). 

5. The IoT testbed automatically generates formal word reports

containing the results of all devices. 

. Testbed requirements, structure and components 

Building a security testbed for IoT devices requires defining the

ain area of interest and developing a roadmap for the analy-

is process. In this section, we propose an automated IoT testbed

tructure to assess the vulnerabilities of IoT devices. This structure

utomates the penetration testing task, thereby reducing user in-

ervention. Our objective is to build a secure IoT testbed that tests

evices from various security aspects. The testbed should: 

• Establish secure communication between testbed compo- 

nents 

• Authenticate all nodes in the network 
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Table 2 

Literature review of IoT security testbeds. 

Ref. Year Testbed approach Hardware Setup Devices tested Attacks and experiments 

covered 

SOFTWARE Auto- 

mated 

MS OS Wi-Fi BLE 

Tekeoglu and 

Tosun (2016) 

2016 • Analyze captured 

packets from network 

layers 2 and 3. 

• A hub that connects 2 

access points 

• Kali Linux machine 

• Ubertooth with 

Wireshark in another 

machine 

• Smartphones to control 

the IoTs from a different 

WLAN 

• HDMI sticks 

• Wireless cameras 

• Drones 

• Activity trackers 

• Smart watches 

• Nmap 

• Cipher suit checks 

• Firmware updates in 

clear text 

• Weak password checks 

• Brute force detection 

checks 

• Extracts video streams 

from cameras 

• Iptables 

• Ebtables 

• Wireshark 

• Kismet 

• OpenWrt 

• OpenVAS 

• Binwalk 

✗ ✗ - 
√ √ 

Sachidananda et al. 

(2017) 

2017 • Penetration testing 

for security analysis. 

• Uses the closed source NI 

TestStand tool. 

• Nest Cam 

• Philips Hue 

• Amazon Echo 

• SENSE Mother 

• Samsung 

SmartThings 

• Others 

• Port scanning 

• Fingerprinting 

• Process enumeration 

• NMAP 

• Wireshark 

• Aircrack 

• Nessus 

• OpenVAS 

• Cain & Abel 

• OSSEC 

• Tenable 

√ √ 

✗ 
√ √ 

Hale et al. (2018) 2018 • Identify security risks 

in wearable IoT 

devices by using 

Metawear. 

• SecuWear with Metawear 

chip 

• Kali Linux 

• Ubertooth 

• Metawear only 

(development chip 

simulating BLE 

devices) 

• Eavesdropping attack 

• DoS attack 

• Wireshark ✗ ✗ - 
√ √ 

Our Proposed IoT 

Testbed 

2019 • Develop an IoT 

penetration testing 

platform to assess 

risks and 

vulnerabilities of IoT 

devices 

• Multiple modules: 

º GUI 

º Testing 

º Network monitoring 

º Reporting 

º Storage 

• Smart Bulb 

• IP camera 

• Port scanning 

• Vulnerability scans 

• Downgrading attack 

• Search exploits 

• Brute force directories, 

passwords and port 

services 

• Testing SSL configuration. 

• Nmap 

• Tshark 

• Metasploit 

• WAFW00F 

• SQLmap 

• SSLStrip 

• Dirb 

• SSL Scan 

• Nikto 

• TLS proper 

√ √ √ √ √ 
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Fig. 1. Structure of the proposed IoT Testbed. 
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Fig. 2. IoT testbed components. 
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• Control test modules and test sequencing 

• Record events and test results 

• Establish reusable tests and testbed components 

• Ensure scalability of the testbed, enabling more tests to be

added 

.1. . Testbed structure 

Our testbed uses a modular architecture, whereby every part

f the testbed is made of modules that can be extended or even

eplaced completely. The structure also allows for the easy addition

f more security tests. 

The initial testbed structure consists of five modules, as shown

n Fig. 1 . 

• Interface Module : This module acts as an I/O interface. It

consists of two units: a Graphical User Interface (GUI) unit

and an Output unit. The GUI takes input feeds from users

(when required) and delivers them to the Testing Module

for analysis. This method reduces user intervention during

the testing process. When the analysis is complete, a sum-

marized report is generated by the Report Module and sent

to the user. 

• Testing Module: This module manages the test cases and

launches them in order. All test cases and scripts are saved

in the Storage Module. Once the testbed is in operation, it

calls up general scripts from the database to examine the

general network characteristics of the IoT devices. Based on

the device’s response, the testing module launches more ad-

vanced test cases to tackle security issues. For example, af-

ter recognizing any open ports in the IoT device, dedicated

test cases will be launched to test the vulnerability of those

ports. Such vulnerabilities can include outdated services or

low-security configuration or authentication. Moreover, IoT

device responses will be checked to determine whether each

test case passed or failed. 

• Network Module: This module controls network activities

and communication with IoT devices. It creates and monitors

the Network Access Point (AP) and will be further discussed

in Section 3.2 . 

• Report Module: This module generates a final report of the

security assessment results for the device. It is compiled

from test results and logs. 

• Storage Module: This unit stores all events initiated by the

different modules for later retrieval and for final report gen-

eration once the assessment is complete. It saves all infor-
mation about the tested devices and stores the test case

scripts. 

.2. Testbed main components 

In terms of function, our proposed automated testbed relies

n five components that use the testbed structure modules. 

ig. 2 summarizes the testbed components and their roles. 

The testbed has the following five main functional components:

• IoT Device Under Investigation (DUI). This is the IoT device

to be tested, such as a smart socket, smart wireless cam-

era, etc. It will be connected to the wireless network of the

testbed. 

• Admin Machine. This is the main component of the secu-

rity testbed that runs the Kali Linux operating system. Using

the Network Module, it audits all network traffic and exam-

ines packets in the network. It also sends an alert if any type

of attack is detected using python scripts and Tshark. Any

IP address requested by the DUI will be checked against IP

blacklists to determine whether or not it is malicious. Mali-

cious calls will be blocked and reported. Moreover, the ad-
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min machine acts as an orchestra, using the Testing Mod-

ule to launch and coordinate test scenarios. Once a test is

launched, its results are analyzed to determine which test

should be run next. The storage module stores information

about all registered devices in the testbed, blocking unregis-

tered devices from the network. 

• Private Wireless Network . Usually, testbeds use wireless

routers to simulate network environments. Sniffing software

is then deployed to collect data broadcast over the local net-

work. To acquire more information or packets between two

nodes in the network, interception tools such as Address

Resolution Protocol (ARP) spoofing are used to launch an at-

tack. Based on our experiments, new IoT devices detect ARP

spoofing attacks and disconnect automatically from the net-

work once they are discovered. Using the admin machine, a

Wireless hotspot is created using a virtual AP tool to create a

Wireless Local Access Network (WLAN). This method is pre-

ferred over using a physical router, as it gives the testbed au-

tomation system privileged access to Dynamic Host Config-

uration Protocol (DHCP) server services and other function-

alities in the AP. It therefore allows the testbed to audit net-

work traffic with administrative privilege to circumvent the

need for ARP Spoofing. The virtual AP tool provides commu-

nication encryption and security using the WPA2-PSK Wi-Fi

key managed by the network module. In addition, it mon-

itors the outboard connection of the DUI. In other words,

the module checks all external IP addresses requested by the

DUI against a collection of blacklisted IPs to prevent mal-

ware from attempting to connect to Command and Control

(CNC) servers. If the device is already infected by malware,

it will be detected and the device will be excluded from the

network. This countermeasure fulfills the security require-

ments of the testbed. 

• Controlling Applications. Some IoT devices can only be

controlled through their associated mobile application. The

testbed therefore includes a smartphone device that is

equipped with authorized mobile applications to control IoT

devices under testing. It generates traffic and packets with

controlling commands on the network, and can be used to

check whether or not the controlling commands and mes-

sages are sent in clear text, i.e. readable by attackers. In ad-

dition, it replicates packets to form replay attacks, thereby

revealing weaknesses in IoT devices. 

• Attacking Machine. The attacking machine (Kali Linux) is

used to launch attacks against the DUI to uncover weak-

nesses. For instance, it can launch replay attacks or brute

force password attacks. In addition, it runs DoS attacks

against the testbed and the DUI to test their resistance and

ability to block such attacks. 

To give a better idea of how the testbed modules cooperate, 

Fig. 3 summarizes the scenario for a DUI connected to the testing

network. As shown in Fig. 3 , once a new device tries to connect

to the network, the testbed will check its identity by looking it up

in the testbed local database records. The testbed operator regis-

ters the devices to be tested in the database of the program before

starting the test. If the network module does not find the device in

the database, the testbed will reject the device from the network. 

After the authorization step, the testing module launches a list

of test cases on the DUI, analyzes the DUI test results and stores

the results in the storage module. An example of a test case is the

scan test script, in which the testbed software scans DUI directo-

ries, seeking open directories with no authentication. This vulner-

ability could lead to system intrusion and data leakage. After all

tests have been run, test results will be listed in a formal report. 
The formal report is a word file generated by a python script

isting the test results in a format that is easy for a human opera-

or to understand. A sample report is shown in Fig. 4 . The report

ists device information in a table, including its detected Operating

ystem and port services. It also lists all CVEs and exploits found

sing the device model number or device name. Additionally, as all

orts are scanned during the testing process, any services found in

he device’s open ports will be checked on the CVE and exploits

atabases. The test results are then listed in the results section of

he report. The Test Case column lists all tests launched against the

oT device, while the Test Result column informs the reader of the

esults of each test. The test result is listed as Not Vulnerable if

he device was not found to be vulnerable to the test and Vulnera-

le if the device was vulnerable. The Assessment column includes

hort comments generated by each test. Furthermore, some of the

omplex tests generate extra logs and save them in a separate text

le to be reviewed later by the operator. Some tests don’t generate

ny logs; these simply enter a dash (-) in the Additional Informa-

ion column. If necessary, tests can be modified in the future to

nclude more comments. 

In Section 4 , we will focus on the testing mechanisms and tools

hat check the security aspects of IoT devices. 

. Experimental setup 

In this section, we demonstrate how the testbed architecture

nd components are used to test the security of IoT devices. Our

xperiments are conducted in two phases: a semi-manual Exten-

ive Analysis Phase and an Automated Testing Phase. Analyzing the

hreads of IoT devices is a very complicated task, as pen-testing the

evices involves testing the security of communications between

oT devices and smartphones, as well as between IoT devices and

he cloud. It also requires testing the vulnerabilities of the IoT de-

ice itself, and testing the effect of physical tampering. The process

y which communications are sent and received by IoT devices—a

otential source of vulnerability—is shown in Fig. 5 . The devil im-

ge represents hackers and their possible points of attack. 

The first phase is conducted to understand the nature of the

oT device, its communication characteristics, its possible vulnera-

ilities and the used tools to detect them. This information is then

sed to shape the second phase: an extensive automatized secu-

ity analysis of the IoT device. Table 3 sets a comparison between

hese two phases. The comparison is based on testing setup, ex-

ected results in each phase and the method used to obtain the

esults. 

.1. Phase 1- extensive analysis phase 

The first testing phase investigates the security of IoT devices

sing the following steps, summarized below in Table 4 : 

• Gather information and scan for vulnerabilities. Before

testing the IoT device, it is necessary to search for device

vulnerabilities and any related exploit attempts. This can

be done using Shodan, vulnerabilities databases such as the

Common Vulnerabilities and Exposures database (CVE), the

National Vulnerabilities Database (NVD) and the Rapid7 Ex-

ploits Database, and tools such as Snitch, OWASP ZAP, Was-

can, Skipfish or other similar tools. If any exploits are found

for similar devices, whether of the same type or from the

same vendor, these are tested on the DUI to assess its vul-

nerability. 

• Perform Nmap scanning. The DUI and all its ports are

checked using the Nmap scanner to analyze the vulnerabil-

ity of any open ports. Nmap responses should be checked to

ensure that the DUI doesn’t expose critical information dur-

ing the Nmap test. 
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Fig. 3. Communication between testbed modules. 

Table 3 

Comparison between extensive analysis phase and automated testing phase. 

Research phases Set up Expected result Methodology 

Phase 1: Extensive 

Analysis 

Each device is tested individually 

using a list of tools conducting 

different hacking attempts to find 

the IoT device’s vulnerabilities. 

Each test will generate different 

results/outcomes. 

Tests are done manually. 

Results are obtained manually 

through analysis 

Phase 2: Automated 

Testing 

The testbed system’s software is 

based on a modular structure. 

Each testing module will 

automatically run a list of tests to 

check the IoT device’s 

vulnerabilities. 

The test results will be expressed 

as Vulnerable or Not Vulnerable. If 

the device passes a given test, it is 

not vulnerable in that area; if it 

fails, the device is vulnerable to 

attack. 

The module’s test cases are in 

Python code. The module 

analyzes the IoT device’s 

responses to each test script 

to determine if it passed or 

failed the security test. 
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Fig. 4. Sample of report generated by the IoT testbed. 

Fig. 5. Points of weakness in IoT device communications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Check Secure Sockets Layer (SSL) certificate. The SSL cer-

tificate is tested to see if a DUI that hosts a web server has

a reliable certificate. This can be checked using TLS-proper,

SSLScan and Nikto tools. 

• Check asynchronous connection with a time server. This

test checks if the IoT device is synchronized with a time

server. If this test fails, the resulting vulnerability could

make it hard to track its system logs and events, and also

to perform operations that require timestamps and synchro-

nization. 

• Perform downgrading attack. This attack focuses on re-

ducing the level of cryptography used in the communi-

cation channels between two nodes ( Alashwali and Ras-

mussen, 2018 ). Reducing the level of encryption used in the

secure channel can result in the device sending information
without any encryption at all, as is the case with HTTP. This

test forces communications to downgrade from HTTPS to

HTTP using SSLStrip, Ettercap, Better-cap, etc. If a conversa-

tion is successfully downgraded, critical information such as

credentials and control packets may be collected by a third

party. If the device refuses the downgrade and rejects any

non-HTTPS connections, it is considered a secure device. 

• Perform credentials check and brute force attacks. An-

other potential vulnerability that must be tested is the use

of default credentials. As mentioned earlier, Mirai botnets

have been known to gain control over devices with default

credentials. If users are not forced to change the default

password during configuration, the resulting vulnerability is

a severe issue. Another potential issue is when IoT devices

allow an unlimited number of false access trials. Limiting ac-
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Table 4 

Summary of the test cases and their expected results. 

Tests Used tools Expected results 

Gather information and scan 

for vulnerabilities 

Snitch, OWASP ZAP, 

Wascan, Skipfish 

Gathers information about the DUI’s vulnerabilities or about previous attack attempts 

recorded in the CVE database. Wascam and Skipfish are security penetration testing 

tools that recursively crawl web pages hosted in webservers. They assess security and 

look for vulnerabilities such as flaws, links, email addresses and any other information 

that could lead to social engineering, malware injections, etc. 

Nmap scanning Nmap Lists all open ports along with their services and DUI information. DUI information 

could include the operating system running on the device, its version number, etc. 

Check Secure Sockets Layer 

certificate 

TL S-proper, SSL Scan and 

Nikto tools 

Compares the HTTPS certificate signature to the database. This reveals information about 

the certificate such as the encryption used, the generation date, etc. 

Check asynchronous 

connection with a time 

server 

Wireshark If the device fails to synchronize with the NTP server during multiple connection 

requests, it is considered vulnerable. 

Downgrade Attack SSLStrip, Ettercap, 

Better-cap 

If the device refuses the HTTP connection/request, then it is not vulnerable. If the device 

accepts an HTTP request (instead of HTTPS), it is vulnerable to this kind of attack. 

Credentials check and brute 

force attacks 

Python Script Attempts to authenticate user by sending many usernames and passwords. If the device 

doesn’t detect the attack or if the password is found, the device is vulnerable to this 

kind of attack. 

Brute force attack on 

directories 

Dirb and DirBuster Lists directories that are accessible without authentication, indicating that the device is 

vulnerable. 

Bypass basic HTTP 

authentication 

Web browser plugin (HTTP 

headers 

Sends misconfigured http header to check for possible configurations that may give 

access. 

Inject XSS and SQL 

commands 

SQLmap, Manual If XSS or SQL injection attempts successfully reveal hidden information, the device is 

vulnerable. 

Check firewalls WAFWoof Checks whether or not firewall is used 

Check exploits Metasploit and Armitage Reports any attacks and vulnerabilities in the IoT device found by Metasploit. 

Analyze communication 

between IoT device and user 

machine 

Wireshark, Manually If control packets are sent between the user machine and the DUI in clear text without 

encryption, the device is vulnerable. 

Check requested external IP 

addresses 

Wireshark, manually If the device attempts to connect to malicious servers, it is considered vulnerable. 

Disassemble mobile 

application 

Dex2jar If the dissembled mobile application contains hard-coded credentials, it is considered 

vulnerable. 

Firmware check Binwalk Outdated firmware is usually vulnerable. The firmware is therefore checked to ensure 

that the device is using the latest version. 

Hardware analysis UART This test attempts to dump firmware from the hardware using UART in order to obtain 

root shell and access sensitive information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cess trials prevents brute force attacks. These are all aspects

that we can test using a simple python script. 

• Conduct brute force attack on directories. If the DUI is

hosting a web server, this server could have multiple di-

rectories. Even if it has credentials, it’s possible that not

all directories will be protected. To check if any directories

are left without credentials, the testbed uses a dictionary to

conduct a brute force attack using Dirb and DirBuster tools. 

• Bypass basic HTTP authentication. Some web servers use

HTTP basic authentication to obtain user credentials. HTTP

requests can use POST and GET methods. If servers are

weakly configured, they may bypass HTTP authentication re-

quests that have HTTP methods other than GET/POST. As a

result, private data may be exposed or non-authenticated

users may gain access. 

• Inject XSS and SQL commands. If the DUI hosts a web

server with an HTML interface, it could be vulnerable to XSS

and SQL injection attacks. This can be checked using tools

such as SQLmap that examine the parameters of an HTTP

GET request to inject SQL commands. If the web server is not

protected against this type of attack, the server’s SQL service

may expose critical information. 

• Check firewalls. Some web servers have firewalls that pro-

tect them from network attacks. The firewall of the DUI web

server can be tested using a WAFWoof tool. 

• Check exploits. As shown in the literature review, re-

searchers are interested in revealing the vulnerabilities of

different types of IoT products, and many CVEs are reported

every day. Some CVEs are also publicized with a python or a

bash script that takes advantage of the vulnerability to per-
form an attack. Existing exploits on devices similar to the

DUI can be checked using Metasploit and Armitage tools. 

• Analyze communication between the IoT device and the

user machine. In this task, we intercept the communication

between the IoT device and the user’s machine. First, traf-

fic will be generated by using a mobile application (or the

browser, if the device contains a web server) to control the

IoT device. This allows us to check if communication occurs

in clear text, and whether the device is vulnerable to replay,

impersonation or modification attacks. In addition, this task

detects if any credentials are sent in clear text. 

• Check requested external IP addresses. In this test, the

testbed will report any attempt by the DUI to connect to

malicious IP addresses. 

• Disassemble mobile application. Breaking down the mo-

bile application can give hints about control packet creation

and expose secret information. Applications can slow down

reverse engineering by using obfuscation techniques, which

raises the security level in smartphone applications. 

• Check firmware. Outdated firmware is usually vulnerable. If

vendors do not enforce updates on an IoT device’s firmware,

the device may be compromised. Analyzing firmware can

highlight the existence of backdoors, hardcoded admin cre-

dentials or command injection vulnerabilities. Analyzing 

firmware requires experience in reverse engineering. 

• Analyze hardware. Some IoT device vendors don’t give pub-

lic access to device firmware. An alternative method is ex-

tracting the firmware from the IoT device. By disassembling

the device, the printed circuit board (PCB) can be checked

to find universal asynchronous receiver-transmitter (UART) 
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Algorithm 1 

Automated testbed process. 

Require : DUI; Testing device; 

Ensure : DUI is configured with wireless network of the testbed 

1: DUI connect to the wireless network 

2: Testbed check device information in Database 

3: if not found then 

4: Reject the device connection request 

5: return 0 

6: Accept connection, allow device to be in the network 

7: Testbed launch Nmap on ports 80, 443, 8080 

8: for Nmap results in port (80, 443, 8080) do 

9: Check services on the port 

10: if port has webservices then 

11: DUI = webserver 

12: else 

13: DUI = host 

14: end if 

15: end for 

16: if DUI = webserver then 

17: results = webserver_tests() 

18: else 

19: results = host _tests() 

20: end if 

21: report = Generate_Report(results) 

22: return report 
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ports or other serial ports. If ports are found, a PC/laptop can

be connected to the IoT device to analyze its binary image

and extract its credentials, i.e. a physical tampering attack. 

In this phase, the security of several IoT devices was assessed

manually by using the above test cases. For an example, we will

detail the assessment of two devices: a medical gateway and a

wireless camera. Both devices host a webserver, but the medical

gateway leverages HTTPs for communication while the wireless

camera uses HTTP. The detailed test report for the two devices is

shown in Appendix 1 . 

During the manual security assessment, the tested devices are

grouped into two sets: devices that contain a web server and de-

vices that act as hosts, connecting to a cloud or a server. The de-

vices that host web servers can be recognized by examining the

services available in port 80, 8080 or 443. The Nmap tool is capa-

ble of recognizing the services on the ports, as it has an extensive

database of service signatures. The devices can therefore be cate-

gorized as webserver or host-based according to the Nmap results

for the services hosted in port 80, 8080 or 443. The devices that

host a web server can be attacked using the same mechanisms as

those used against email servers and web servers. However, IoT de-

vices are much weaker than the regular web servers due to their

limited power and computing capabilities, which affects their se-

curity capabilities. 

An automated IoT testbed is required for this step, as it can de-

tect the vulnerabilities of a group of different IoT devices automat-

ically without the need of human intervention. 

4.2. Phase 2- automated testing phase 

Automating IoT vulnerabilities assessments can be a challeng-

ing task due to the limitations of IoT devices, as explained earlier.

Based on the experiments conducted in Section 4.1 , we propose

methods with different security testing scenarios for different IoT

devices. These scenarios will run automatically using the system

in Fig. 1 . The tests are to be conducted with minimal user inter-

vention. As shown in Fig. 1 , all modules work simultaneously at

the back end, while the GUI shows the testbed status and related

results. The various steps of the automated testing process are as

follows: 
As shown in Algorithm 1 , once the operator chooses one or

ore devices to be tested, the testbed assesses each one individ-

ally in turn. To test each IoT device, the testbed first excludes all

oT devices from the network other than the DUI. The testing mod-

le then launches some initial test cases, including an extensive

map test to check network activity and report open ports. Based

n the results of these preliminary tests, the testing module will

etermine whether or not there is a web server hosted in the IoT

evice. Based on this data, the testing module will launch the cor-

esponding tests as shown in Fig. 6 . 

In non-web server cases, a replay attack is used to replay con-

rol packets after a period of time. The control packets contain the

ommands that affect the status of the IoT device. 

Fig. 7 shows the updated testbed GUI and its functionalities.

sers can choose to test multiple devices, which will be listed in

he left panel. The test updates will be shown in the middle panel:

he upper part shows the test logs, while the lower table lists test

ummaries and results. In the right panel, the user can see net-

ork traffic inside the WLAN, as well as traffic to and from the

UI. In addition, the testbed lists the last connections attempted by

he DUI. Using the proposed automated testbed architecture, vul-

erability assessments are conducted on multiple IoT devices. In

ection 5 , we discuss the use of the testbed on a wireless camera

nd a smart bulb. 

. Automated Testbed Implementation and Discussion of 

esults 

In this section, the proposed automated testbed architecture is

sed to conduct vulnerability assessments on a wireless camera

nd a smart bulb, thereby demonstrating its capabilities. 

.1. Wireless Camera Assessment 

A wireless camera can send live video feeds/streams wirelessly

ver the internet. It can also save records locally. Cameras usually

ost web servers, allowing users to view live feeds and control

he camera. Many wireless camera vendors provide mobile apps

hat simplify and control operations. Like other IoT devices, wire-

ess cameras can be vulnerable on their own, but the addition of

osted web servers and mobile applications increase security risks.

IoT devices that host web servers can be attacked using the

ame tools used to attack standard web servers, such as XSS, SQL

njection attacks, command injection, brute force attacks on direc-

ories/credentials/port services, etc. The resistance and defense ca-

abilities of web servers hosted on IoT devices are weaker than

tandalone web servers, increasing the probability of a successful

ttack. We therefore included many penetration tests to check web

erver vulnerability. 

To demonstrate the wireless camera security testing scenario,

he steps in Fig. 8 are followed. The wireless camera is contacted to

e connected to the local network. If the testbed system software

etects the camera, it tries to authorize and identify the device and

etrieves saved information from its database. Once accepted, all

raffic generated in the testbed—especially traffic originating from

he device—is monitored and analyzed, as are the device’s exter-

al connections. The fingerprints of all ports are checked with the

map tool to determine whether or not the device hosts a web-

erver. As the camera hosts a webserver on port 80, it is catego-

ized as a “device with embedded webserver”. The testbed runs a

redefined list of tests to check open ports and discover any web

erver vulnerabilities. Each test assesses a specific security aspect.

or example, the SQL injection test uses the SQLmap tool, which

njects an SQL statement into the HTML page of the web server. If

he webserver executes the statement, the device is considered to

e vulnerable. Similarly, the device’s SSL, firewall and certificates
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Fig. 6. Tests launched for web server DUI vs non-web server DUI. 

Fig. 7. Graphical user interface of the testbed. 

Fig. 8. Testing for wireless camera assessment by the testbed software. 
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Table 5 

Testbed report for wireless camera. 

Test case Status Additional information Results discussion 

Check Requested IPs Not Vulnerable Details of each IP are 

saved 

During the test, the device did not connect to any 

malicious IP addresses; therefore, the device passed the 

test. The results of each IP address request have been 

exported in a separate file. 

Device Sync with NTP Not Vulnerable - The device was found to be in sync with NTP server; 

therefore, the DUI passed the test. 

Scan Directories Not Vulnerable Details are saved As no web server directory was found to be open without 

authentication, the device passed the test. 

Check Firewall Vulnerable No WAF detected The testbed did not find any firewalls in the web server; 

therefore, the DUI failed this security test. 

Authentication in plain 

text 

Vulnerable User: Pass found Authentication in plain text: When the DUI used an HTTP 

authentication mechanism, the authentication 

information (Username: Password) was sent in clear text 

without encryption. This is a very severe vulnerability, as 

an attacker could control the device as an admin using 

those credentials. 

Extensive Port Scan Vulnerable - In this test, port 80 (HTTP and HTTPS) was found to be 

open on the device, as well as port 23 (telnet) and 21 

(FTP server). The fact that ports 21 and 23 were open 

means that the device was more prone to attacks. The 

testbed therefore reported that the device failed this 

particular test. 

Nitko Test Vulnerable Vulnerable to 

cross-site request 

forgery and downgrade 

attack 

The Nikto web assessment tool was used to assess the 

DUI. It reported some severe vulnerabilities. Therefore, 

the device failed the test. 

Check Certificate Vulnerable No HTTPS The DUI did not use a proper certificate in its 

communications, and port 443 was found to be open and 

not secured. Therefore, the device failed the test. 

Check SSL Vulnerable No HTTPS The DUI did not use SSL. 

SQL Injection Not Vulnerable Details are saved In this test, tools such as SQLmap are used to check if the 

device is vulnerable to SQL injection. However, the DUI 

used HTTP authentication rather than an HTML page and 

no SQL server were found. Consequently, device was not 

vulnerable to SQL injection, and it passed the test. 

Table 6 

Testbed report for the smart bulb. 

Test case Status Additional information 

Check Requested IPs Not Vulnerable Details of each IP are saved 

Exploit Scan Not Vulnerable Details are saved 

Replay attack – UDP Vulnerable .. 

Extensive Nmap scan Not Vulnerable .. 

Verification of asynchronous connection with time server Vulnerable .. 
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are checked. Some scripts use different approaches to determine if

the device is vulnerable or not. For example, the “device sync with

NTP server” test entails scanning all NTP packets in the device’s

communications to determine whether or not it is synchronized

with the NTP server. Each test case checks a specific characteristic

of the device and reports if the device passed or failed this secu-

rity check. Finally, once all the tests are done, all results will be

reported in a word document as shown in Fig. 4 . 

Table 5 lists the test results generated by the proposed testbed

from the wireless camera security assessment. Each test checks

one vulnerability. If the vulnerability is found, the report indicates

“Vulnerable” for that particular test. If the test found no vulnerabil-

ity in a given domain, it is listed as a “Not Vulnerable”. If a device

receives “Not Vulnerable” for all tests, it means that no weak point

was found, and the device is not vulnerable to the tests specified.

Some tests generate detailed reports in the reporting module that

must be reviewed by an operator, as shown in the “Additional in-

formation” column in Table 5 . A column was added to the table to

discuss the results. 

From the test results, one can conclude that the wireless cam-

era is vulnerable to attack, as it sends authentication credentials in

clear text with no encryption. However, its use of an HTTP authen-

tication mechanism means that it is not prone to SQL injection and
SS, as long as HTTPS protocol is used in communications instead

f HTTP. 

.2. Smart bulb assessment 

A smart bulb is an IoT device controlled by UDP packets. It re-

eives controlling commands directly from users via a dedicated

pplication or through a server or cloud. Information is sent us-

ng UDP or TCP packets, which are usually encrypted or ciphered.

owever, if the messages are not secure, the bulb may be vulnera-

le to replay attacks. For this reason, we test such devices against

eplay attacks and packet fabrication. 

We tested a smart bulb controlled by a mobile application with

ur IoT security testbed. Only five tests were applicable, as the bulb

id not have many open ports. The testbed started by checking IP

ddresses requested by the DUI, scanning for smart bulb exploits,

eplaying UDP packets, performing an Nmap scan and checking

synchronous connections with the time server. Conversely to the

ultiple tests run specifically for server host devices such as the

mart camera, the only test uniquely dedicated to non-web server

evices is the replay UDP packets test. This is because the smart

ulb receives control commands through UDP packets. 
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The report generated from the smart bulb tests can be found in

able 6 . The report lists a test as “Vulnerable” if an attack is suc-

essful; if the attack is unsuccessful, the test is listed as a “Not Vul-

erable”. The results show that the device is vulnerable to replay

ttacks, as it applied the commands received without checking the

ender’s MAC address. 

. Conclusion and future research 

With the recent exponential increase in the use of IoT devices,

ecurity breaches associated with these devices are also on the

ise. IoT device security testing is needed before the devices can be

sed by the public. Assessing the security of IoT devices is difficult

ue to the wide variety and functionality of IoT devices. Although

any research studies have explored IoT security assessment, there

s an urgent need for extensive analysis and testing for vulnerabil-

ties, and it is clear that these tasks should be automated. The goal

f this research is to propose a new IoT security testbed architec-

ure, and to present an automated IoT testbed to analyze IoT device

ecurity gaps. 

Various penetration and security testing tools are leveraged to

ssess vulnerabilities in IoT devices. The proposed framework also

ecures the testbed, authenticates all devices used by the testbed

nd encrypts all communication between them. Furthermore, it

ecords and logs all events that occur during the tests and gen-

rates reports informing the user if each test was passed or failed.

he results provide data to inform the feasibility of practical ex-

eriments to assess common threats against these IoT devices. Two

evices were successfully tested by our IoT testbed. 

One of the biggest challenges in this domain is the exploding

umber of IoT devices being used, the great variety of IoT devices

nd protocols, and the lack of standardization in the field. This

oupled with IoT devices interacting with each other greatly in-

reases available attack vectors and the possibility of zero-day at-

acks, making it very hard for security experts and security testing

ools to accurately assess the security level of different IoT devices.
Table A.1 

Extensive analysis phase: first device - medical gateway. 

Test case Description 

Check SSL certificate 

weakness 

Tools test the existence of SSL certificate and gai

more information. 

Downgrade attack Force use of HTTP over HTTPs. 

Break the password Attempt to brute force the password. 

Multiple logins at the same 

time 

Attempt to login as admin using different devices

the same time. 

Directory access List directories that are accessible without 

authentication. 

HTML analysis Check vulnerabilities in html code. 

Inject JavaScript in the URL Injecting JavaScript commands in the URL can giv

indirect access to information. 

SQL injection in HTTP 

request 

Use SQL injection in HTTP requests to gain 

unauthorized access to saved data in the server’s

database. 

Bypass base authentication Send misconfigured HTTP header to check if 

misconfigurations exist, which might give access 

authorized information. 

Firewall information Tool to check the firewall used. 

Check Metasploit / Armtage 

for possible exploits 

Metasploit / Armtage checks if an attack is possib

against the device. 

Key installation attack 

(KRACK)– Proof of concept 

The KRACK breaks the WPA2 protocol by forcing 

devices to reuse nonce during WPA2 handshake. 

Optional encryption effects The attack tests if confidential information (i.e. a

password) is exposed. 
We believe that an adequate testing architecture—one that is

omprehensive enough to manage the abovementioned challenges

nd able to handle the evolving complexity of the IoT ecosystem—

s yet to be developed. It will be interesting to see what devel-

pments take place in that direction. However, in designing our

estbed, we think that we have taken a step in the right direc-

ion in helping to solve this difficult problem. The modular nature

f our testbed and the ability to easily add new tests and change

xisting ones gives it the flexibility it needs to stay relevant as a

ecurity solution and to keep up with the demands of the growing

oT ecosystem. 

Future work will include additional automated test cases and

cenarios that tackle different aspects of IoT device security. More

oT devices need to be analyzed in order to increase the scope of

ur IoT testbed test case database. We are also looking forward to

mploying artificial intelligence to improve our methods for ana-

yzing IoT devices and their vulnerabilities ( Tables A.1 and A.2 ). 
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ppendix 
Test result Notes 

n Not vulnerable SSL certificate uses OpenSSL and get TLS 1.2. 

Not vulnerable Downgrading the communication from HTTPs 

to HTTP doesn’t work. The device refuses the 

connection request. 

Not vulnerable The process takes a very long time. 

 at Vulnerable The device doesn’t reject the second access, 

nor does it notify admin of the existence of 

another admin. 

Not vulnerable No directories are open. 

Not vulnerable No HTML 

e Not vulnerable The test is not applicable for this device. 

 

Not vulnerable The test is not applicable for this device. 

to 

Not vulnerable The device doesn’t respond to misconfigured 

HTTP requests. 

Not applicable The web server rejects all connections. 

le Not vulnerable No exploits 

Vulnerable The device uses another layer of encryption, 

as it uses TLS. 

dmin Vulnerable The admin has the option of using HTTP or 

HTTPS in the configuration page. Once it is 

chosen, credentials are sent in clear text. 
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Table A.2 

Extensive analysis phase: second device – wireless camera. 

Test case Description Test result Notes 

Multiple logins at the same 

time 

Attempt to log in as admin using different devices at 

the same time. 

Vulnerable The device doesn’t reject the second access, 

nor does it notify the admin with the 

existence of another admin. 

Multiple access attempts Try multiple passwords, which results in multiple 

failed attempts. 

Vulnerable DUI doesn’t block attempts, which can lead to 

brute force or dictionary attack. 

Breaking the password Attempt to get the password using dictionary attack. Vulnerable As the size of the password increases, the 

time it takes to break the password increases. 

Directory access Check for directories that are accessible without 

authorization. 

Not vulnerable No directories found to be accessible without 

authentication. 

HTML analysis Check vulnerabilities in HTML code. Not vulnerable No HTML 

Inject JavaScript in URL Injecting JavaScript commands in the URL can give 

indirect access to information. 

Not vulnerable The test is not applicable for this device. 

SQL injection in HTTP 

request 

Injecting SQL requests in HTTP to gain unauthorized 

access to data saved in the server database. 

Not vulnerable The test is not applicable for this device. 

Bypass the base 

authentication 

Send misconfigured HTTP header to check if 

misconfigurations exist, which might give access to 

authorized information. 

Not vulnerable The device doesn’t respond to misconfigured 

HTTP requests. 

Firewall information Tool to check Firewall used. Not available The web server rejects all connections. 

Check Metasploit / Armitage 

for possible exploits 

Metasploit / Armitage will check if attacks are 

possible against the device. 

Not vulnerable No exploits are found. 

Key installation attack 

(KRACK)– Proof of concept 

The KRACK breaks WPA2 protocol by forcing devices 

to reuse nonce during the WPA2 handshake. 

Not vulnerable The device doesn’t reuse nonce. 

Man in the Middle (MITM) 

attack 

The attack tests if confidential information (i.e. admin 

password) is exposed. 

Vulnerable The device doesn’t use HTTPs. Device 

credentials are sent in clear text with no 

encryption during MITM attack. 

Deauthentication attack This attack tests if the camera can be disabled from 

the wireless. 

Vulnerable The device is disassociated from the network 

successfully. 

Obtaining firmware This tests if the firmware of the IP camera is found in 

online resources. 

Applicable The firmware of the wireless camera is found 

in online resources. 

Reverse engineering This test attempts to dump firmware from the 

hardware using UART in order to obtain root shell to 

access sensitive information. 

Vulnerable The camera is accessed through the UART. All 

files have been sent to another PC by using 

FTP server for later revision. Attackers are 

also able to write in the memory of the 

camera and change the password. 

Cross domain attack The attack tests if the camera has a file containing 

weak or improper configurations. 

Vulnerable Both firmware versions (1.02 and 1.16) are 

vulnerable to this attack. 
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