
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Monitoring and Control Gateway for IoT Edge
Devices in Smart Home

Fadi Aloul, Imran Zualkernan, Shams Shapsough, Mohammed Towheed
Department of Computer Science and Engineering

American University of Sharjah
Sharjah, United Arab Emirates (UAE)

{faloul, izualkernan, b00046058, b00060653}@aus.edu

Abstract—Security aspects of Internet of Things (IoT)
systems are not well understood. Therefore, the rapid adoption
of systems using IoT technologies is poised to create a large
number of exposed systems with new security exploits and
vulnerabilities. This is especially critical for systems deployed in
a smart home environment. Any vulnerabilities or security
issues in such a system can compromise the physical security of
residents and the exchange of data by unsophisticated edge
devices can have severe ramifications if not addressed properly.
Edge-devices contribute significantly to security risks for these
IoT systems. Edge-devices are based on resource-constrained,
wireless-enabled microcontrollers typically running primitive
operating systems. The resource-constrained nature of edge
devices, in tandem with IoT network protocols, creates many
unique security challenges. This work presents a generic IoT
Monitoring and Control Gateway (MCG) providing edge
security testing and control measures. These measures allow
homeowners to enforce levels of security to the edge layer
consisting of home appliances and gadgets. The MCG found
many vulnerabilities in various home appliances like cameras,
routers and music streaming systems.

Keywords— IoT Edge Devices, Security, Control, Smart Home

I. INTRODUCTION

The popularity of Internet of Things (IoT) has enabled
rapid development of systems and applications. These
systems utilize smart sensors and heterogeneous networks in
a variety of domains such as healthcare, industrial
automation or smart spaces. The data exchanged in
applications, such as home remote monitoring using
cameras, is highly sensitive and personal and should not be
accessible by unauthorized parties. Security of IoT devices
has a variety of dimensions that can be addressed using a
multitude of techniques [1]. For example, measures must be
taken to ensure sensitive data is kept confidential and
secure. One proposed approach is to implement security at
the network layer [2]. Edge nodes are small devices that
collect information from the surrounding environments. For
Example, such devices may monitor a resident’s personal
room or collect climate data like temperature or humidity of
the home, or the presence or absence of residents. An
example of exploiting these nodes was highlighted when the
Mirai botnets penetrated edge nodes in a smart home and
carried out massive Distributed Denial of Service (DDoS)
attacks against well-known websites like Netflix and Github
[3]. A typical edge device collects data using sensors and
transmits this data to the IoT network. Edge devices need to
optimize power consumption because they are often remotely
located and rely on small batteries for power. While some
work has addressed the security of edge devices [4], many
security holes in edge nodes of IoT systems are still not well

understood. This lack of understanding is reflected in a
recent increase of cyberattacks that compromised and
exploited edge devices in several IoT systems. IoT research
has gone into the development and deployment of novel and
experimental IoT systems, with less focus on securing them
[5].

This paper presents a generic IoT Monitoring and
Control Gateway (MCG) that provides edge security testing
and control measures. These measures allow home owners
to enforce levels of security to the edge layer consisting of
appliances and other home gadgets. The MCG can be
integrated with different back-end systems using a robust
Application Programming Interface (API) that allows
configuration, monitoring, and error checking. The
availability of such assessment tool and the enforcement of
security requirement designed from a business context
provide a protection and monitoring capability to the most
vulnerable parts of IoT systems and smart homes.

The main contributions of this paper are:

• A security API which is lightweight and resource
friendly API in terms of CPU and power usage.

• The API is independent of hardware and software
technologies and hence can run on any embedded
device such as a Raspberry Pi or a machine that runs
Kali Linux.

• The API utilizes open source technologies such as the
Kali tools that come pre-installed with every Kali
distribution and is budget friendly.

• In terms of utility, the API provides a preliminary
security check and insures a standard basic level of
security control for the devices in the smart home.

The rest of the paper is organized as follows. A
summary of related work is discussed in Section II. This is
followed by a description of the design approach and the
proposed architecture in Sections III and IV, respectively.
Experimental results are shown in Section V. The paper
ends with a conclusion in Section VI.

II. RELATED WORK

In [2], a system is proposed for IoT Security as an
alternative to solutions that are embedded into a device.
They proposed a three-party architecture in which a
specialist provider offers security-as-a-service. The
susceptibility of IoT devices to botnet attacks was
demonstrated in [3] where Mirai botnets were used to take
over IoT devices and carry out Distributed Denial of Service
(DDoS) attacks against important websites like Netflix and
Github. Inter-device communication lies at the core of IoT

and, therefore should be secure. This issue was explored in
[6] where communication packets between IoT devices over
WIFI and Bluetooth were captured using Wireshark, Kismet
and Ubertooth. These packets were analyzed and reported.
The researchers in [7] approached IoT security in a ‘hands-
on’ manner where three use cases were constructed to show
(1) leakage of personally identifiable information (PII), (2)
leakage of sensitive user information, and (3) unauthorized
execution of functions. The results were analyzed to show
common vulnerabilities with the IoT. The Sablo distributed
security platform for IoT was discussed in [8]. An additional
security testing phase was proposed in addition to the regular
execution in the IoT system to analyze traffic real-time. The
researchers in [9] provided a frame-of-reference for those
beginning with IoT device vulnerabilities. This research used
the Kali tool Nessus for common vulnerability assessment of
a wide range of IoT devices like Phillips Hue Bulb and
Amazon Echo. Machine learning has great potential in IoT
security, and an approach was presented in [10] where a
threat model was developed which could recognize potential
attacks against various layers in a layered IoT framework.
Researchers in [11] developed a security testbed for
wearable IoT devices which could also report on the
communication between wearables and their application
counterparts like Fitbit Studio installed on user’s
smartphones. The researchers in [12] presented a
comprehensive taxonomy of IoT vulnerabilities and in [13]
the authors explained what a penetration testbed for IoT
devices should contain. The researchers in [14] conducted a
holistic security analysis of IoT systems starting with
standard penetration testing of individual devices to data and
context-based tests. Lastly, in [15], the researchers
demonstrated the working of an IoT security testbed which
is an isolated system and requires dedicated hardware to run.
The primary utility of this system is to test if IoT devices
meet minimum security requirements.

III. DESIGN APPROACH

The primary design approach for research presented here
consists of leveraging custom-made programs and penetration
software that target specific vulnerabilities. There are a
number of testbeds aimed at testing the security of embedded
systems [16-21]. In general, these programs are designed to
investigate Wireless Sensor Networks (WSNs) and
embedded systems that utilize WIFI, ZigBee and Bluetooth
protocols. The purpose of each of these evaluations is to
assess different aspects of general-purpose embedded
systems like performance, security and resource utilization.
These programs usually check for generic vulnerabilities
such as weak and trivial passwords, Denial of Service (DoS)
attack opportunities, unprotected data, etc. Open-source and
proprietary tools [16-26] have also been used for testing small
wireless sensor devices and heterogeneous communication
devices. Such tools can enable access and control into various
edge nodes as well as provide monitoring capabilities.
Moreover, these tools are complemented with user-defined
scripts and tests.

IV. PROPOSED ARCHITECTURE

The aim of this work was to develop a Monitoring and
Control Gateway (MCG) to check and verify that connected
IoT devices are properly assessed for vulnerabilities and meet
a set of security requirements. MCG has the following tasks:

• Detect and identify connected edge devices

• Get and store device information

• Preform basic black-box penetration testing

• Share security report, notifications and messages with
admin

Fig. 1. Monitoring and Control Gateway (MCG) API Architecture

.

Fig. 1 shows the overall architecture of the MCG. The
MCG API is written in Node.js and is running on a Kali
Linux based Raspberry Pi [22] waiting for HTTP or MQTT
requests. A user of a home automation platform (e.g. Home
Assistant) which is also running independently on another
Raspberry Pi or a similar home automation platform, can
request for a security check of connected devices on the
home network. This HTTP or MQTT request reaches the
MCG, and based on request parameters such as the host
addresses to check or the tests to carry out, the MCG begins
security tests on the smart home devices and gadgets. This is
done asynchronously and once the tests are completed, a
report is generated which is sent back to the platform or the
application via MQTT or HTTP.

The setup shown in Fig. 1 is inside a local area network,
and the API are packaged and installed locally within the
network of anyone who wishes to test their smart home
system and devices. The system is flexible enough and can
handle more complex hardware other than the edge devices.
For demonstration purposes, a Raspberry Pi [21] was used as
the base hardware for the MCG. The MCG receives
commands from a specific backend and execute them as
well as store device information. That information alongside
the security reports is stored in a Redis database [16].
Metaspolit [23], Hydra [24] and other tools were tested on the
RPi create a professional Pen-test unit that is both effective
and accessible. In regard to the security testing functionality,
MCG currently performs the tasks/tests as shown in Table I.

The MCG after conducting the above tests, generates a
report and notifications that can be reviewed by an
administrator in order to commission and decommission
devices from the system and network.

The MCG’s penetration testing functionality is intended
to extract preliminary information on the overall security of
the home system. However, MCG also needs to take into
account that health and operation of the system as well. The

pen-test unit should not inadvertently take down or interrupt
system operations. For that purpose, system health/status
monitors are used to periodically check the system’s current
status and report back [25].

A. API

The MCG services are exposed as an asynchronous API
which allows any IoT based system to run its monitoring and
error checking operations on its edge devices. For example, a
home automation platform makes API calls to the MCG to
configure and schedule a set of tests, monitor the currently
connected devices and network traffic, and lastly check up on
the system by analyzing generated reports and notifications
for each device. These calls are done via HTTP or MQTT
requests. The tests are conducted at the gateway between the
MCG and the connected IoT devices. The Security API
constantly checks for new vulnerabilities in known IoT
devices and updates tests. Moreover, self-testing functions are
of utmost importance as the system needs to assess its own
integrity and provide a layer of trust to users. The API is
implemented in an asynchronous pattern for both HTTP and
MQTT requests, which allows the testing system to start tests
and be notified when a change is detected without having
multiple REST calls and acknowledgments. An asynchronous
RESTful route is implemented for an HTTP request while
MQTT’s asynchronous nature is utilized by default as the
calling platform will subscribe to the result topics and can
continue its usual tasks without waiting for the report.

When a report is generated by the MCG, the subscribing
platform receives this response. The advantage of having
asynchronous API calls over synchronous calls depends on the
application. In the case of the Security API, performing
actions like a DoS Attack will start a coordinated DoS attack
against the target and will stop after the specified amount of
time which could be a few minutes to a few hours. It is not
feasible to block the entire program while the attack finishes
which is what a synchronous API would do. Another

Test Tool Description

Port scanning & Basic Reconnaissance Nmap

Gather and collect information on the device (if applicable) like operating system, IP
and MAC addresses as well as open ports by utilizing TCP SYN stealth scans as well
as UDP scans on ports 80 (HTTP), 443 (HTTPS/SSL), 22 (SSH), 25 (SMTP), 110
(remote mail server), 445 (SMB).

Common Vulnerabilities Check
Vulscan and nmap-
vulners

Uses well known Common Vulnerability Exploit (CVE) databases to report CVEs
found on the ports scanned and for the device itself

Active DoS Pen-test Xerxes
Perform a controlled Sync flood and Ping of Death (PoD) attacks against a specific
device and observing its response.

Additional CVE information and related
exploits

Metasploit and
searchsploit

Find more information on detected CVEs for device or for any port

Service alive/Web server running Nikto
Find out if any web server is running (HTTP) or Server Message Block (SMB) is
alive or remote desktop service is enabled (RDP)

Hidden links/Missing headers Dirb
Analyze communication packets from http, https, ssl for missing headers or hidden
links to resources

Service credential dictionary attack Hydra Conducts dictionary attacks against open ports running services like ssh, smb, or rdp

TABLE I. TESTS CONDUCTED BY THE MONITORING AND CONTROL GATEWAY (MCG).

TABLE II. SECURITY HOLES OF TYPICAL HOME DEVICES FOUND USING THE MONITORING AND CONTROL GATEWAY (MCG).

example is the information gathering action which runs a tool
like Nmap to capture open ports of a device and depending on
the scope of the scan its run time could vary which would
block the entire program for an unspecified amount of time till
the method returns. We might have tests scheduled for more
than one device to all begin at the same time and blocking the
entire program till one API call returns is not ideal in this
scenario. What we rather need is for results to come in
asynchronously like the sniffer in the Security API, which
would capture packets for a specified amount of time, and
have them as they are sniffed, rather than call the method
every time to capture few packets and then stop. The ideal
flow would be to start the sniffer and analyze packets as they
come in.

V. RESULTS

The Monitoring and Control Gateway (MCG) was used
to test a variety of typical home devices from various
vendors. The devices included a low-end home router, home
cameras and music streaming devices like Google
Chromecast and a streaming music box. As Table II shows,
in most cases information like device and OS details was
easy to acquire. In addition, many open ports were
identified. In some cases, common vulnerabilities (CVEs)
were found as well. In addition, Web content URLs were
also found on multiple devices. Finally, many devices had
missing headers in the GET commands. An example of a
final report for one of the devices in Table II is shown in
Fig. 2. It highlights the results of port scanning and
information gathering followed by vulnerability assessment
for discovered CVEs and lastly the discovery of hidden web
content and URLs on the device.

VI. CONCLUSION

As the use of Internet of Things (IoT) enabled devices
increases, so will attack vectors and the severity of attacks
causing new vulnerabilities to come to light and in some
cases exploited routinely. The low-cost, low-power nature
of many IoT edge-devices offers a challenge for both
developers and security researchers. This research provides

the first few steps in addressing these challenges and
developing a low-cost security control and monitoring
measure to add another layer of visibility and security to IoT
systems. The results attained from the MCG for the devices
in Table II comply with the Open Web Application Security
Project’s (OWASP) IoT Security Guidance for
Manufacturers. As shown in [26], this guidance aims to help
manufacturers build more secure products in the IoT space
and is at the basic level, giving builders of products a basic
set of guidelines to consider from their perspective. As per
these guidelines, the results were in line with indices, I1:
Insecure Web Interface, I2: Insufficient Authentication/
Authorization, I3: Insecure Network Services, I4: Lack of
Transport Encryption and I10: Poor Physical Security.
Future work for the MCG includes adding more security
tests in compliance with the standards of the time, to enforce
self-integrity check and to implement network monitoring.

ACKNOWLEDGMENTS

This project was funded by a research grant from Dubai
Electronic Security Center (DESC) in United Arab Emirates
(UAE).

Device Scan Results

Home Linksys Wireless Router
Device and OS details acquired, TCP/IP Fingerprint found, 12 Open ports and services running on them, no common
vulnerabilities (CVE), 1 hidden web object found on port 80 (web server), 3 missing headers found in GET requests, 1 brute
force login credential found

D-Link Camera (DCS-8000LH)
Device and OS Details acquired, TCP/IP Fingerprint found, 4 open ports and services running on them, 2 Common
Vulnerabilities (CVE) found, no web content or web servers, found SSL vulnerability and related issues

Google Chromecast
Device and OS details acquired, TCP/IP fingerprint found, 5 open ports and services running on them, no exploits or CVEs,
found one web content URL on port 8008, 3 missing headers found in GET requests

Popcorn Hour Music Player
Device and OS Details found, TCP/IP Fingerprint found, 11 TCP, 4 UDP open ports and services running on them, 1
Common Vulnerability found – Slowloris Denial of Service Attack, 3 web content found on ports 2020, 8008 and 8883, total
11 important headers missing on ports 2020, 8008 and 8883, web server running on device, can be exploited

Yi Antscam Camera
Device details but no host details found, no TCP open ports, TCP/IP fingerprint found, 42 Open UDP ports and services
running on them, no Exploits or CVEs, no web content or web servers found on device.

Amazon Echo (Alexa)
Device details found, 2 TCP open ports, 192 UDP open/filtered ports and services running on them, TCP/IP fingerprint
found, no exploits or CVEs and no web content or web servers found running on device

Fig. 2. Sample Monitoring and Control Gateway (MCG) Test Report.

 TEST REPORT POPCORN HOUR MUSIC PLAYER
TCP PORT SCANNING –

PORT STATE SERVICE REASON VERSION
22/tcp closed ssh reset ttl 64
25/tcp closed smtp reset ttl 64
80/tcp closed http reset ttl 64
110/tcp closed pop3 reset ttl 64
443/tcp closed https reset ttl 64
445/tcp closed microsoft-ds reset ttl 64
23/tcp open telnet syn-ack ttl 64
2020/tcp open http syn-ack ttl 64 Syabas Popcorn Hour media player http config
4000/tcp open remoteanything? syn-ack ttl 64
5000/tcp open upnp? syn-ack ttl 64
6357/tcp open upnp syn-ack ttl 64
7000/tcp open afs3-fileserver? syn-ack ttl 64
8008/tcp open http syn-ack ttl 64
8118/tcp open privoxy? syn-ack ttl 64
8883/tcp open http syn-ack ttl 64 Syabas Popcorn Hour media player BitTorrent interface
30000/tcp open tcpwrapped syn-ack ttl 64
39410/tcp open upnp syn-ack ttl 64
MAC Address: 00:06:DC:8C:E0:31 (Syabas Technology (Amquest))
Not shown: 65524 closed ports
Reason: 65524 resets

UDP PORT SCANNING –

Not shown: 196 closed ports
Reason: 196 port-unreaches
PORT STATE SERVICE REASON VERSION
137/udp open netbios-ns udp-response ttl 64 Microsoft Windows netbios-ns (workgroup: WORKGROUP)
138/udp open|filtered netbios-dgm no-response
1900/udp open|filtered upnp no-response
5353/udp open|filtered zeroconf no-response
MAC Address: 00:06:DC:8C:E0:31 (Syabas Technology (Amquest))
Service Info: Host: PCH-A500; OS: Windows; CPE: cpe:/o:microsoft:windows

SYSTEM AND DEVICE DETAILS –

MAC Address: 00:06:DC:8C:E0:31 (Syabas Technology (Amquest))
Device type: general purpose
OS CPE: cpe:/o:linux:linux_kernel:2.6 cpe:/o:linux:linux_kernel:3
OS details: Linux 2.6.32 - 3.10

DISCOVERED VULNERABILITIES (CVE) –

CVE:2007-6750

 # Name Disclosure Date Rank Check Description
 - ---- --------------- ---- ----- -----------
 0 auxiliary/dos/http/slowloris 2009-06-17 normal No Slowloris Denial of Service Attack

Uptime guess: 0.022 days (since Sun Sep 29 15:16:06 2019)
Network Distance: 1 hop
TCP Sequence Prediction: Difficulty=262 (Good luck!)
IP ID Sequence Generation: All zeros
Service Info: Device: media device; CPE: cpe:/h:syabas:popcorn_hour

WEB CONTENT AND HIDDEN URLS –

---- Scanning URL: http://192.168.1.153:8008/ ----
+ http://192.168.1.153:8008/deployment (CODE:200|SIZE:0)

---- Scanning URL: http://192.168.1.153:8883/ ----
+ http://192.168.1.153:8883/download.cgi (CODE:200|SIZE:1948)
+ http://192.168.1.153:8883/start.cgi (CODE:200|SIZE:7053)

REFERENCES
[1] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet of

things (IoT) security: Current status, challenges and prospective
measures,” in Proc. of the 10th International Conference for Internet
Technology and Secured Transactions (ICITST), London, pp. 336-
341, 2015.

[2] V. Sivaraman, H. Gharakheili, A. Vishwanath, R. Boreli, and O.
Mehani, “Network-level security and privacy control for smart-home
IoT devices,” in Proc. of the IEEE 11th International Conference on
Wireless and Mobile Computing, Networking and Communications
(WiMob), pp. 163–167, 2015.

[3] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the
IoT: Mirai and Other Botnets,” in Computer, vol. 50, no. 7, pp. 80–
84, 2017.

[4] S. Shapsough, F. Aloul, and I. Zualkernan, “Securing Low-Resource
Edge Devices for IoT Systems,” in Proc. of the IEEE International
Symposium on Sensing and Instrumentation in IoT Era (ISSI),
Shanghai, China, 2018.

[5] C. (Defta) Costinela-Luminiţa and C. (Iacob) Nicoleta-Magdalena,
“E-learning Security Vulnerabilities,” in Procedia - Social and
Behavioral Sciences, vol. 46, pp. 2297–2301, 2012.

[6] A. Tekeoglu and A. Tosun, “A Testbed for Security and Privacy
Analysis of IoT Devices,” in Proc. of the IEEE 13th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 343–
348, 2016.

[7] C. Kolias, A. Stavrou, J. Voas, I. Bojanova, and R. Kuhn, “Learning
Internet-of-Things Security ‘Hands-On,’” in IEEE Security &
Privacy, vol. 14, no. 1, pp. 37–46, 2016.

[8] C. Săndescu, O. Grigorescu, R. Rughiniş, R. Deaconescu, and M.
Calin, “Why IoT security is failing. The Need of a Test Driven Security
Approach,” in Proc. of the 7th RoEduNet Conference: Networking in
Education and Research (RoEduNet), pp. 1–6, 2018.

[9] R. Williams, E. McMahon, S. Samtani, M. Patton, and H. Chen,
“Identifying vulnerabilities of consumer Internet of Things (IoT)
devices: A scalable approach,” in Proc. of the IEEE International
Conference on Intelligence and Security Informatics (ISI), pp. 179–
181, 2017.

[10] J. Pacheco and S. Hariri, “IoT Security Framework for Smart Cyber
Infrastructures,” in Proc. of the IEEE 1st International Workshop on
Foundations and Applications of Self* Systems (FAS*W), pp. 242–
247, 2016.

[11] S. Siboni, A. Shabtai, N. Tippenhauer, J. Lee, and Y. Elovici,
“Advanced Security Testbed Framework for Wearable IoT Devices,”
in ACM Transactions on Internet Technology, vol. 16, no. 4, pp.
26:1–26:25, December 2016.

[12] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani,
“Demystifying IoT Security: An Exhaustive Survey on IoT
Vulnerabilities and a First Empirical Look on Internet-Scale IoT
Exploitations,” in IEEE Communications Surveys & Tutorials, vol.
21, no. 3, pp. 2702–2733, third-quarter 2019.

[13] C. Chen, Z. Zhang, S. Lee, and S. Shieh, “Penetration Testing in the
IoT Age,” in Computer, vol. 51, no. 4, pp. 82-85, April 2018.

[14] V. Sachidananda, S. Siboni, A. Shabtai, J. Toh, S. Bhairav, and Y.
Elovici, “Let the Cat Out of the Bag: A Holistic Approach Towards
Security Analysis of the Internet of Things,” in Proc. of the 3rd ACM
International Workshop on IoT Privacy, Trust, and Security, New
York, NY, USA, pp. 3–10, 2017.

[15] O. Abu Waraga, M. Bettayeb, Q. Nasir, and M. Abu Talib, “Design
and implementation of automated IoT security testbed,” in Computers
& Security, vol. 88, January 2020.

[16] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T.
Razafindralambo, “A survey on facilities for experimental internet of
things research,” in IEEE Communication Magazine, vol. 49, no. 11,
pp. 58–67, November 2011.

[17] G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: A
Wireless Sensor Network Testbed,” in Proc. of the 4th International
Symposium on Information Processing in Sensor Networks, Boise, ID,
USA, April 2005.

[18] E. Ertin et al., “Kansei: A Testbed for Sensing at Scale,” in Proc. of
the 5th International Conference on Information Processing in Sensor
Networks, Nashville, TN, USA, pp. 399–406, 2006.

[19] J. Bers, A. Gosain, I. Rose, and M. Welsh, “Citysense: The design
and performance of an urban wireless sensor network testbed,” in
Proc. of the IEEE International Conference on Technologies for
Homeland Security, 2008.

[20] J. M. Hernández-Muñoz, J. Vercher, L. Muñoz, J. Galache, M.
Presser, L. Gómez, and J. Pettersson, “Smart Cities at the Forefront of
the Future Internet,” in The Future Internet, Lecture Notes in
Computer Science, vol 6656. Springer, Berlin, Heidelberg, pp. 447–
462, 2011.

[21] “FIT/IoT-LAB Very large scale open wireless sensor network
testbed.” [Online]. Available: https://www.iot-lab.info/.

[22] “Buy a Raspberry Pi 3 Model B – Raspberry Pi.” [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

[23] “Metasploit | Penetration Testing Software, Pen Testing Security,”
Metasploit. [Online]. Available: https://www.metasploit.com/.

[24] “Kali Linux Penetration Testing Tools.” [Online]. Available:
https://tools.kali.org/.

[25] “SANS Institute: Reading Room - Risk Management.” [Online].
Available:https://www.sans.org/readingroom/whitepapers/riskmanage
ment/paper/37452.

[26] “OWASP - IoT Security Guidance.” [Online]. Available:
https://www.owasp.org/index.php/IoT_Security_Guidance.

